Web 2.0 Recommendation service by multi-collaborative filtering trust network algorithm
نویسندگان
چکیده
Recommendation Services (RS) are an essential part of online marketing campaigns. They make it possible to automatically suggest advertisements and promotions that fit the interests of individual users. Social networking websites, and the Web 2.0 in general, offer a collaborative online platform where users socialize, interact and discuss topics of interest with each other. These websites have created an abundance of information about users and their interests. The computational challenge however is to analyze and filter this information in order to generate useful recommendations for each user. Collaborative Filtering (CF) is a recommendation service technique that collects information from a user’s preferences and from trusted peer users in order to infer a new targeted suggestion. CF and its variants have been studied extensively in the literature on online recommending, marketing and advertising systems. However, most of the work done was based on Web 1.0, where all the information necessary for the computations is assumed to always be completely available. By contrast, in the distributed environment of Web 2.0, such as in current social networks, the required information may be either incomplete or scattered over different sources. In this paper, we propose the Multi-Collaborative Filtering Trust Network algorithm, an improved version of the CF algorithm designed to work on the Web 2.0 platform. Our simulation experiments show that the new algorithm yields a clear improvement in prediction accuracy compared to the original CF algorithm.
منابع مشابه
QoS-based Web Service Recommendation using Popular-dependent Collaborative Filtering
Since, most of the organizations present their services electronically, the number of functionally-equivalent web services is increasing as well as the number of users that employ those web services. Consequently, plenty of information is generated by the users and the web services that lead to the users be in trouble in finding their appropriate web services. Therefore, it is required to provi...
متن کاملMulti-Collaborative Filtering Trust Network Model for Web 2.0 Recommender
In customer relationship management (CRM), online recommender assumes an important role of suggesting the right product or information to the right customer automatically. Hence customers are empowered with the choices that are predicted to be preferred by the system. The underlying technique is often a collaborative filtering (CF) algorithm that harvests both information from similar products ...
متن کاملTrust-based Service Recommendation in Social Network
With the number of Web services increasing constantly on the Internet, how to recommend personalized Web services for users has become more and more important. At present, there emerged some service recommendation systems utilizing influence ranking and collaborative filtering algorithms in service recommendation. However, they neither considered trust relationships among users, nor deal with t...
متن کاملUse of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems
One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...
متن کاملResearch of Collaborative Filtering Recommendation Algorithm based on Network Structure
This paper combines the classic collaborative filtering algorithm with personalized recommendation algorithm based on network structure. For the data sparsity and malicious behavior problems of traditional collaborative filtering algorithm, the paper introduces a new kind of social network-based collaborative filtering algorithm. In order to improve the accuracy of the personalized recommendati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Information Systems Frontiers
دوره 15 شماره
صفحات -
تاریخ انتشار 2013